Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

نویسندگان

  • Jian Cui
  • Jian Hui Lin
  • Yue Qin Wu
  • Yong Liang Fan
  • Zhenyang Zhong
  • Xin Ju Yang
  • Zui Min Jiang
چکیده

In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-plane lattice thermal conductivity of a quantum-dot superlattice

We have theoretically investigated the in-plane lattice thermal conductivity of a quantum-dot superlattice. The calculations were carried out for a structure that consists of multiple layers of Si with randomly distributed Ge quantum dots separated by wetting layers and spacers. Our model takes into account scattering of acoustic phonons on spherical quantum dots, and corresponding modification...

متن کامل

Silicon Epitaxial Regrowth Passivation of SiGe Nanostructures Pattered by AFM Oxidation

SiGe quantum devices were demonstrated by AFM oxidation and selective wet etching with features size down to 50 nm. To passivate the devices and eliminate the interface states between Si/SiO2, low temperature regrowth of epitaxial silicon over strained SiGe has been tested. The silicon regrowth on Si0.8Ge0.2 was done by rapid thermal chemical vapor deposition (RTCVD) at 700 oC using a hydrogen ...

متن کامل

Uniform SiGe/Si quantum well nanorod and nanodot arrays fabricated using nanosphere lithography

This study fabricates the optically active uniform SiGe/Si multiple quantum well (MQW) nanorod and nanodot arrays from the Si0.4Ge0.6/Si MQWs using nanosphere lithography (NSL) combined with the reactive ion etching (RIE) process. Compared to the as-grown sample, we observe an obvious blueshift in photoluminescence (PL) spectra for the SiGe/Si MQW nanorod and nanodot arrays, which can be attrib...

متن کامل

Nanoscale distortions of Si quantum wells in Si/SiGe quantum-electronic heterostructures.

O N Devices exploiting individual quantum states of electrons promise to extend dramatically the capabilities of silicon integrated electronics. One route to forming such devices is via coup led electrostatically defi ned quantum dots in which electrons are confi ned in a thin strained Si layer on SiGe. [ 1 , 2 ] The unique advantage of forming such quantum dots in Si is the long quantum dephas...

متن کامل

Silicon quantum dots: fine-tuning to maturity.

Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011